## GPU-ready base image with CUDA 12 + cuDNN 9 runtime # If you don't have an NVIDIA GPU or the NVIDIA Container Toolkit, this image still runs on CPU. # For smaller CPU-only images, you can switch back to python:3.11-slim. # Base image is configurable so you can choose CPU-only or CUDA+cuDNN runtime. # Default to Python slim for maximum compatibility; override via build-arg # BASE_IMAGE (or docker-compose build args) to use an NVIDIA CUDA runtime. ARG BASE_IMAGE=python:3.11-slim FROM ${BASE_IMAGE} # Keep python fast/quiet and pip lean ENV PYTHONDONTWRITEBYTECODE=1 \ PYTHONUNBUFFERED=1 \ PIP_NO_CACHE_DIR=1 \ LANG=C.UTF-8 \ LC_ALL=C.UTF-8 \ # sensible defaults (can be overridden by .env) WHISPER_MODEL=large-v3 \ WHISPER_PRECISION=int8 # System deps: ffmpeg for media, curl for healthcheck, jq for scripts, poppler-utils for PDFs RUN apt-get update && apt-get install -y --no-install-recommends \ python3 python3-pip python3-venv \ ffmpeg \ curl \ jq \ poppler-utils \ && rm -rf /var/lib/apt/lists/* WORKDIR /app # Upgrade pip toolchain then install Python deps COPY requirements.txt . RUN python3 -m pip install --upgrade pip setuptools wheel \ && pip3 install --no-cache-dir -r requirements.txt \ && pip3 check || true # App code COPY app.py worker.py scanner.py ./ RUN pip3 install --no-cache-dir gunicorn==22.0.0 # Healthcheck against the app's /health endpoint EXPOSE 8080 CMD ["gunicorn", "-b", "0.0.0.0:8080", "app:app", "--workers", "2", "--threads", "4"]