Files
podx/.env.example

81 lines
2.7 KiB
Plaintext

# Copy this file to .env and fill in secrets
# Meilisearch keys
MEILI_MASTER_KEY=change_me_to_strong_random
MEILI_KEY=${MEILI_MASTER_KEY}
# OpenWebUI integration
OPENWEBUI_URL=http://openwebui:3000
OPENWEBUI_API_KEY=put_your_openwebui_api_key_here
OPENWEBUI_KB_NAME=Homelab Library
OPENWEBUI_KB_ID=your_kb_uuid_here
OPENWEBUI_AUTO_FIX_METADATA=1
# Optional: JSON string to enforce as metadata template when auto-fix runs
# OPENWEBUI_METADATA_TEMPLATE_JSON={}
# Media normalisation
MEDIA_NORMALIZE=1
MEDIA_NORMALIZE_KEEP_ORIGINAL=0
VIDEO_NORMALIZE_CODEC=h264_nvenc
VIDEO_NORMALIZE_EXTENSION=.mp4
VIDEO_NORMALIZE_CRF=28
VIDEO_NORMALIZE_PRESET=medium
VIDEO_NORMALIZE_AUDIO_CODEC=aac
VIDEO_NORMALIZE_AUDIO_BITRATE=160k
AUDIO_NORMALIZE_CODEC=libmp3lame
AUDIO_NORMALIZE_EXTENSION=.mp3
AUDIO_NORMALIZE_BITRATE=192k
AUDIO_NORMALIZE_CHANNELS=2
# Transcription backend (local Whisper by default)
TRANSCRIBE_BACKEND=local
OPENAI_API_KEY=
# Uncomment to customize OpenAI settings when offloading transcription
# OPENAI_BASE_URL=https://api.openai.com/v1
# OPENAI_TRANSCRIBE_MODEL=whisper-1
# OPENAI_TRANSCRIBE_TIMEOUT=600
# Local Whisper settings
# Choose CPU explicitly unless you have a working GPU runtime in Docker
WHISPER_DEVICE=cpu
# Model and precision (large-v3 int8 is accurate but heavy; consider medium/small for speed)
WHISPER_MODEL=large-v3
WHISPER_PRECISION=int8
# Threads for CPU inference
WHISPER_CPU_THREADS=4
WHISPER_BEAM_SIZE=1
# --- GPU (CUDA) optional setup ---
# To enable NVIDIA GPU acceleration:
# 1) Install NVIDIA driver on the host and the NVIDIA Container Toolkit
# 2) Set the Docker runtime to NVIDIA for the worker containers
# DOCKER_GPU_RUNTIME=nvidia
# 3) Ensure GPU visibility (default is all)
# NVIDIA_VISIBLE_DEVICES=all
# 4) Use GPU-friendly precision and device
# WHISPER_DEVICE=cuda
# WHISPER_PRECISION=float16
# 5) (Build-time) use an NVIDIA CUDA runtime base image for the app containers.
# Set an image tag that exists for your architecture (most CUDA images are amd64):
# GPU_BASE_IMAGE=nvidia/cuda:11.8.0-cudnn8-runtime-ubuntu22.04
#
# If you are on ARM64 without discrete NVIDIA GPU, leave GPU_BASE_IMAGE unset and run CPU-only.
# Docker volumes paths
LIBRARY_HOST_DIR=/mnt/nfs/library
TRANSCRIPTS_HOST_DIR=/mnt/nfs/transcripts
# leave others as-is or customize:
# TMP_HOST_DIR=./tmp
# MODELS_HOST_DIR=./models
# MEILI_DATA_HOST_DIR=./data/meili
# REDIS_DATA_HOST_DIR=./data/redis
# RSS / Podcast downloads
# Where to save downloaded podcast audio (inside the container mount)
PODCASTS_ROOT=/library
# Organize under per-show subfolders (true/false)
PODCASTS_PER_SHOW=true
# Scan interval (minutes) for rss_ingest; set RSS_ONCE=1 for one-shot
# RSS_SCAN_MINUTES=120
# RSS_ONCE=0